\(\int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\) [381]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 209 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {\sqrt {a} (35 A+40 B+48 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d}+\frac {a (35 A+40 B+48 C) \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {a (35 A+40 B+48 C) \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {a (A+8 B) \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d} \]

[Out]

1/64*(35*A+40*B+48*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+1/64*a*(35*A+40*B+48*C)*tan
(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/96*a*(35*A+40*B+48*C)*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/24*a
*(A+8*B)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/4*A*sec(d*x+c)^3*(a+a*cos(d*x+c))^(1/2)*tan(d*x+c)
/d

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {3122, 3059, 2851, 2852, 212} \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {\sqrt {a} (35 A+40 B+48 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{64 d}+\frac {a (35 A+40 B+48 C) \tan (c+d x)}{64 d \sqrt {a \cos (c+d x)+a}}+\frac {a (35 A+40 B+48 C) \tan (c+d x) \sec (c+d x)}{96 d \sqrt {a \cos (c+d x)+a}}+\frac {a (A+8 B) \tan (c+d x) \sec ^2(c+d x)}{24 d \sqrt {a \cos (c+d x)+a}}+\frac {A \tan (c+d x) \sec ^3(c+d x) \sqrt {a \cos (c+d x)+a}}{4 d} \]

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(Sqrt[a]*(35*A + 40*B + 48*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(64*d) + (a*(35*A + 40
*B + 48*C)*Tan[c + d*x])/(64*d*Sqrt[a + a*Cos[c + d*x]]) + (a*(35*A + 40*B + 48*C)*Sec[c + d*x]*Tan[c + d*x])/
(96*d*Sqrt[a + a*Cos[c + d*x]]) + (a*(A + 8*B)*Sec[c + d*x]^2*Tan[c + d*x])/(24*d*Sqrt[a + a*Cos[c + d*x]]) +
(A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^3*Tan[c + d*x])/(4*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 3122

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n +
1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C
 - B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x]
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {A \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {\int \sqrt {a+a \cos (c+d x)} \left (\frac {1}{2} a (A+8 B)+\frac {1}{2} a (5 A+8 C) \cos (c+d x)\right ) \sec ^4(c+d x) \, dx}{4 a} \\ & = \frac {a (A+8 B) \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{48} (35 A+40 B+48 C) \int \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \, dx \\ & = \frac {a (35 A+40 B+48 C) \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {a (A+8 B) \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{64} (35 A+40 B+48 C) \int \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \, dx \\ & = \frac {a (35 A+40 B+48 C) \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {a (35 A+40 B+48 C) \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {a (A+8 B) \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{128} (35 A+40 B+48 C) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx \\ & = \frac {a (35 A+40 B+48 C) \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {a (35 A+40 B+48 C) \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {a (A+8 B) \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d}-\frac {(a (35 A+40 B+48 C)) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d} \\ & = \frac {\sqrt {a} (35 A+40 B+48 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{64 d}+\frac {a (35 A+40 B+48 C) \tan (c+d x)}{64 d \sqrt {a+a \cos (c+d x)}}+\frac {a (35 A+40 B+48 C) \sec (c+d x) \tan (c+d x)}{96 d \sqrt {a+a \cos (c+d x)}}+\frac {a (A+8 B) \sec ^2(c+d x) \tan (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \tan (c+d x)}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.07 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.83 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^4(c+d x) \left (6 \sqrt {2} (35 A+40 B+48 C) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^4(c+d x)+(332 A+160 B+192 C+(539 A+616 B+432 C) \cos (c+d x)+4 (35 A+40 B+48 C) \cos (2 (c+d x))+105 A \cos (3 (c+d x))+120 B \cos (3 (c+d x))+144 C \cos (3 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{768 d} \]

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^4*(6*Sqrt[2]*(35*A + 40*B + 48*C)*ArcTanh[Sqrt[2]*Si
n[(c + d*x)/2]]*Cos[c + d*x]^4 + (332*A + 160*B + 192*C + (539*A + 616*B + 432*C)*Cos[c + d*x] + 4*(35*A + 40*
B + 48*C)*Cos[2*(c + d*x)] + 105*A*Cos[3*(c + d*x)] + 120*B*Cos[3*(c + d*x)] + 144*C*Cos[3*(c + d*x)])*Sin[(c
+ d*x)/2]))/(768*d)

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2178\) vs. \(2(185)=370\).

Time = 16.91 (sec) , antiderivative size = 2179, normalized size of antiderivative = 10.43

method result size
parts \(\text {Expression too large to display}\) \(2179\)
default \(\text {Expression too large to display}\) \(2400\)

[In]

int((a+cos(d*x+c)*a)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x,method=_RETURNVERBOSE)

[Out]

1/24*A*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(1680*a*(ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)
*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2)
)*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^8-168
0*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x
+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+2*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)
*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^6+280*(11*2^(
1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+9*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c
)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+9*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos
(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^4+(-840*ln(-4/(2*co
s(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a
-840*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*
a^(1/2)+2*a))*a-2044*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))*sin(1/2*d*x+1/2*c)^2+105*ln(-4/(2*cos(1/2
*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+105*
ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/
2)+2*a))*a+558*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^4/(2*cos
(1/2*d*x+1/2*c)+2^(1/2))^4/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+1/12*B*cos(1/2*d*x+1/2*c)*(a*si
n(1/2*d*x+1/2*c)^2)^(1/2)*(-120*2^(1/2)*a*(ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2
^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*
x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^6+60*(3*2^(1/2)*ln(-2/(2*cos
(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+
3*2^(1/2)*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(
1/2)*a^(1/2)+2*a))*a+4*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))*sin(1/2*d*x+1/2*c)^4+(-90*2^(1/2)*ln(-2/(2*cos(
1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a-9
0*2^(1/2)*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(
1/2)*a^(1/2)+2*a))*a-320*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))*sin(1/2*d*x+1/2*c)^2+15*2^(1/2)*ln(-2/(2*cos(
1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+1
5*2^(1/2)*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(
1/2)*a^(1/2)+2*a))*a+132*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^3/(2*c
os(1/2*d*x+1/2*c)+2^(1/2))^3/sin(1/2*d*x+1/2*c)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+1/4*C*cos(1/2*d*x+1/2
*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*2^(1/2)*a*(ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1
/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos
(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^4+(-12*2^(1/2)*ln(2/(
2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a
))*a-12*2^(1/2)*ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*
c)^2)^(1/2)*a^(1/2)-2*a))*a-24*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))*sin(1/2*d*x+1/2*c)^2+3*2^(1/2)*ln(2/(2*
cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))
*a+3*2^(1/2)*ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^
2)^(1/2)*a^(1/2)-2*a))*a+20*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^2/(
2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/sin(1/2*d*x+1/2*c)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.42 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.08 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 \, {\left ({\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right )^{5} + {\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right )^{4}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (3 \, {\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (35 \, A + 40 \, B + 48 \, C\right )} \cos \left (d x + c\right )^{2} + 8 \, {\left (7 \, A + 8 \, B\right )} \cos \left (d x + c\right ) + 48 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{768 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/768*(3*((35*A + 40*B + 48*C)*cos(d*x + c)^5 + (35*A + 40*B + 48*C)*cos(d*x + c)^4)*sqrt(a)*log((a*cos(d*x +
c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x
 + c)^3 + cos(d*x + c)^2)) + 4*(3*(35*A + 40*B + 48*C)*cos(d*x + c)^3 + 2*(35*A + 40*B + 48*C)*cos(d*x + c)^2
+ 8*(7*A + 8*B)*cos(d*x + c) + 48*A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^5 + d*cos(d*x + c)
^4)

Sympy [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

Timed out

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 399 vs. \(2 (185) = 370\).

Time = 0.43 (sec) , antiderivative size = 399, normalized size of antiderivative = 1.91 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=-\frac {\sqrt {2} {\left (3 \, \sqrt {2} {\left (35 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 40 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 48 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {4 \, {\left (840 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 960 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 1152 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 1540 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 1760 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 2112 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 1022 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 1168 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 1248 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 279 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 264 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 240 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}\right )} \sqrt {a}}{768 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

-1/768*sqrt(2)*(3*sqrt(2)*(35*A*sgn(cos(1/2*d*x + 1/2*c)) + 40*B*sgn(cos(1/2*d*x + 1/2*c)) + 48*C*sgn(cos(1/2*
d*x + 1/2*c)))*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))) + 4*(840*
A*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^7 + 960*B*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^7 +
1152*C*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^7 - 1540*A*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c
)^5 - 1760*B*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^5 - 2112*C*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x +
 1/2*c)^5 + 1022*A*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 1168*B*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2
*d*x + 1/2*c)^3 + 1248*C*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 279*A*sgn(cos(1/2*d*x + 1/2*c))*si
n(1/2*d*x + 1/2*c) - 264*B*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) - 240*C*sgn(cos(1/2*d*x + 1/2*c))*si
n(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^4)*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\int \frac {\sqrt {a+a\,\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^5} \,d x \]

[In]

int(((a + a*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^5,x)

[Out]

int(((a + a*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^5, x)